Image Segmentation and Time Series Clustering Based on Spatial and Temporal ARMA Processes

نویسندگان

  • Ronny Vallejos
  • Silvia Ojeda
چکیده

Spatial autoregressive moving average (ARMA) processes have been extensively used in several applications in image/signal processing. In particular, these models have been used for image segmentation, edge detection and image filtering. Image restoration algorithms based on robust estimation of a two-dimensional process have been developed (Kashyap & Eom 1988). Also the two-dimensional autoregressive model has been used to perform unsu‐ pervised texture segmentation (Cariou & Chehdi, 2008). Generalizations of the previous al‐ gorithms using the generalized M estimators to deal with the effect caused by additive contamination was also addressed (Allende et al., 2001). Later on, robust autocovariance (RA) estimators for two dimensional autoregresive (AR-2D) processes were introduced (Oje‐ da, 2002). Several theoretical contributions have been suggested in the literature, including the asymptotic properties of a nearly unstable sequence of stationary spatial autoregressive processes (Baran et al., 2004). Other contributions and applications of spatial ARMA proc‐ esses have been considered in many publications (Basu & Reinsel, 1993, Bustos 2009a, Fran‐ cos & Friendlaner1998, Guyon 1982, Ho 2011, Illig & Truong-Van 2006, Martin1996, Vallejos & Mardesic 2004).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Segmentation using Improved Imperialist Competitive Algorithm and a Simple Post-processing

Image segmentation is a fundamental step in many of image processing applications. In most cases the image’s pixels are clustered only based on the pixels’ intensity or color information and neither spatial nor neighborhood information of pixels is used in the clustering process. Considering the importance of including spatial information of pixels which improves the quality of image segmentati...

متن کامل

Hierarchical image segmentation based on similarity of NDVI time series

Although a variety of hierarchical image segmentation procedures for remote sensing imagery have been published, none of them specifically integrates remote sensing time series in spatial or hierarchical segmentation concepts. However, this integration is important for the analysis of ecosystems which are hierarchical in nature, with different ecological processes occurring at different spatial...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach

Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012